Microbial Control and Growth

Lecture 6 – Dr. Gary Mumaugh

Subjects Covered

- Microbial Growth
- Microbial Control
 - Sterilization
 - Selective Removal
 - o Temperature
- Types of Heat Treatment
 - o Incineration
 - o Tyndallization
 - \circ Autoclaving
- Microbial Control
 - Filtration
 - Reduction of water activity
 - Chemical treatments
 - Antiseptics and disinfectants

Microbial Growth: Societal Factors

- In people and animals, unwanted microbes can lead to disease
- In plants, they can damage crops and hurt the environment
- Within industrial structures, e.g., pipelines and transit systems, they can produce wear and tear, oxidation (rust), and other forms of erosion
- Knowledge about microbial growth and how to control it has dramatically helped human society
- The purpose of studying microbial control is far ranging from complete eradication to a slight inhibition of their growth

Principles of Bacterial Growth

- Prokaryotic cells divide by binary fission
 - One cell divides into two
 - Two into four etc.
 - Cell growth is exponential
 - Doubling of population with each cell division
 - Exponential growth has important health consequences
 - Generation time
 - Time it takes for population to double
 - a.k.a. doubling time
 - Varies among species

Bacterial Growth in Nature

- Conditions in nature have profound effect on microbial growth
 - Cells sense changing environment
 - Synthesize compounds useful for growth
 - Cells produce multicellular associations to increase survivability
 - Example Biofilms, Slime layers

Biofilm

- Formation begins when bacteria attach to surfaces
 - o Other bacteria attach and grow on initial layer
- Has characteristic architecture
 - o Contains open channels for movement of nutrients and waste
- Cells within biofilms can cause disease
 - Treatment becomes difficult
- Factors in determining where biofilms form are: Location, Location and Location
- Biofilms will form anywhere there is moisture and a surface with at least a minimal nutrient source

Biofilm in Healthcare

- In the 1990s doctors began to make the connection between chronic, low-grade infections and the biofilm mode of growth
- Dental professionals made the connection easily, as teeth could readily be scraped for microscopic examination
- Internal cases of chronic infection have taken longer to prove, but testing has shown that many troublesome diseases have entrenched microbial populations at their core
- Biofilms are everywhere!

Bacterial Growth in Nature

- Interactions of mixed microbial communities
 - Prokaryotes live in mixed communities
 - Many interactions are cooperative
 - Waste of one organism nutrient for another
 - Some cells compete for nutrient
 - Synthesize toxic substance to inhibit growth of competitors

Obtaining Pure Culture

- Pure culture defined as population of cells derived from single cell
 - All cells genetically identical
- Cells grown in pure culture to study the activities of specific species
- Pure culture obtained using special techniques
 - Aseptic technique
 - Minimizes potential contamination
- Cells grown on culture media
 - Can be broth (liquid) or solid form

Obtaining Pure Culture

- Culture media can be liquid or solid
 - Liquid is broth media
 - Used for growing large numbers of bacteria
 - Solid media is broth media with addition of **agar**
 - Agar marine algae extract
 - Liquefies at temperatures above 95°C
 - Solidifies at 45°C
 - o Bacteria grow in colonies on solid media surface
 - All cells in colony descend from single cell
 - Approximately 1 million cells produce 1 visible colony

Obtaining Pure Culture

- Streak-plate method
 - o Simplest and most commonly used in bacterial isolation
 - Object is to reduce number of cells being spread
 - Solid surface dilution
 - Each successive spread decreases number of cells per streak

Environmental Factors on Growth

- As group, prokaryotes are everywhere
 - Some live in "comfortable" habitats
 - Some live in harsh environments
 - Most of these are termed extremophiles and belong to domain Archaea
- Major conditions that influence growth
 - Temperature
 - o Oxygen
 - o pH
 - Water availability

Temperature Affecting Growth

- Each species has well- defined temperature range
 - Within range lies optimum
- Psychrophile -5°C to 15°C (23-50 F)
 - Found in Arctic and Antarctic regions
- Psychrotroph 20°C to 30°C (68-88 F)
 - Important in food spoilage
 - Mesophile 25°C to 45°C (77-113 F)
 - More common
 - Disease causing
- Thermophiles 45°C to 70°C (113-158 F)
 - Common in hot springs
- Hyperthermophiles 70°C to 110°C (158-230 F)
 - o Usually members of Archaea
 - Found in hydrothermal vents

Oxygen Affecting Growth

- Obligate aerobes
 - Absolute requirement for oxygen
 - Use for energy production
- Obligate anaerobes
 - No multiplication in presence of oxygen
 - May cause death
- Facultative anaerobes
 - Grow better with oxygen
 - Use fermentation in absence of oxygen
- Microaerophiles
 - Require oxygen in lower concentrations
 - Higher concentration inhibitory
- Aerotolerant anaerobes
 - o Indifferent to oxygen, grow with or without
 - Do not use oxygen to produce energy

pH Affecting Growth

- Bacteria survive within various pH range
 - Neutrophiles
 - Multiply between pH of 5 to 8
- Acidophiles
 - Thrive at pH below 5.5
- Alkalophiles
 - Grow at pH above 8.5
 - Maintain neutral internal pH through sodium ion exchange

Water Affecting Growth

- All microorganisms require water for growth
- Water not available in all environments
 - In high salt environments
 - Bacteria increase internal solute concentration
 - Osmotolerant bacteria tolerate high salt environments
 - Bacteria that require high salt for cell growth termed halophiles

Nutritional Factors Affecting Growth

- Growth of prokaryotes depends on nutritional factors as well as physical environment
- Main factors to be considered are:
 - Required elements
 - Growth factors
 - Energy sources
 - Nutritional diversity

Nutritional Factors Affecting Growth

- Required elements
 - Major elements
 - Carbon, oxygen, hydrogen, nitrogen, sulfur, phosphorus, potassium, magnesium, calcium and iron
 - Essential components for macromolecules
 - Organisms classified based on carbon usage
 - Heterotrophs (Use organism carbon as nutrient source)
 - Autotrophs (Use inorganic carbon (CO₂) as carbon source)
 - Trace elements
 - Cobalt, zinc, copper, molybdenum and manganese
 - Required in minute amounts
- Energy Sources
 - o Organisms derive energy from sunlight or chemical compounds
 - Phototrophs (Derive energy from sunlight)
 - Chemotrophs (Derive energy from chemical compounds)
 - Organisms often grouped according to energy source

Microbial Control: Sterilization

- Complete removal of all life forms from a given area (Includes viruses)
- Sterilization treatments are among the most dramatic of all 'growth control' methods
- Important for instruments used in medical procedures, food-related items and laboratory cultures
- Preventing cross-contamination is extremely important

Microbial Control: Selective Control

- This method is applicable in cases when only a select group or division of microbes are known to be 'harmful' and that the removal of this group will not damage the product
- Example of 'selective removal' is pasteurization
 - Is a process by which milk is heated in an effort to kill off lethal pathogens
 - e.g., Strains of salmonella and E. coli
 - Typically, the pasteurization process is used to kill-off harmful bacteria
- Sometimes pasteurization is used to isolate harmless bacteria as opposed to kill it
- Example of the separation method is bread
 - Contains a preservative known as sodium benzoate--this inhibits the growth of molds and prolongs the shelf life of the product

Microbial Control: Temperature

- Temperature (both extreme hot and cold variances) are a part of the previously mentioned pasteurization method
- Critical enzymes are either killed outright or are dematured

Microbial Control: Temperature

- Two methods of heat to curtail the growth of microbes
 - o Dry heat--a process involving incubation in an oven-like environment
 - o Moist heat--a process utilizing steam within a pressure-oriented encasement

Types of Heat Treatments - Incineration

- Ancient heat-killing methods
- Typically destroys all living things, in addition, to the sample in which they are contained
- Incineration was primarily used to ward off the spread of infectious disease
 - In the 14th century--during the time of the black plague, individuals were known to burn the corpses (along with the material possessions) of those who died of the epidemic
 - Incineration is still required by law for the disposal of body parts and the removal of animals suspected of being infected with anthrax

Types of Heat Treatments - Tyndallization

- Archaic method of sterilization was repeated boiling
 - While boiling a solution for 30 minutes at room temperature is apt to kill-off the majority of vegetative cells, it will not have the same effect upon bacterial endospores.
- Boiled then cooled; incubated for several hours; and then re-boiled. The entire cycle is then repeated three times.
- Used to sterilize media before the invention of the autoclave
 - Major drawback was that it was time-consuming

Microbial Control: Autoclaving

- Most common method of sterilization currently used in laboratories and hospital settings
- Complex pressure cooker that employs stream under pressure to raise the temperature to 121 C for at least 15 minutes
- At this elevated temperature all living cells, including endospores and viruses, are killed

Microbial Control: Filtration

- Used to remove microbes from gases & liquids
- Examples include the brewing process whereby yeast is removed before final bottling
- Because it is ineffective in removing viruses from a solution, filtration cannot technically be considered a form of sterilization
- The process is often referred to as 'filter sterilization'

Microbial Control: Filtration

- Three major types of filters
 - Depth Filters
 - The oldest form, consisting of overlapping layers of fibrous sheets of paper, asbestos or glass fibers
 - Are able to remove the bulk of unwanted materials
 - Membrane Filter

• Evaporation

- The most common form in microbiology labs
- Nucleopore Membranes
 - Exposing a very thin polycarbonate film (10 m) to nuclear radiation

Microbial Control: Removal of Water Activity

- Water may be removed from foods by any of the following four methods:
 - Heating Directly remove water from the sample
 - Directly remove water from the sample
 - Freeze-drying Relies on salt and sugar to bind up the water
 - Addition of salt or sugar Relies on salt and sugar to bind up the water

Microbial Control: Chemical Treatments

- The advantage is that they offer continuous protection
 - In low dosages, the majority of chemicals are unlikely to change the physical environment
 - Adding a chemical to a sample can alter the finished product and leave behind unwanted residual effects
 - In medical situations where significant amounts of antimicrobial chemicals are used for the purpose of killing-off lethal types of microbes (e.g. cancerous agents)

Antimicrobial Agents

- Potency to kill-off or inhibit microorganisms
- Many forms of synthetic and natural compounds have antimicrobial qualities
- static Chemicals that stop microbes from growing
- cidal Kills cells
- - lytic in addition to killing microbes also cause them to lyse (dissolve or destruct cells, e.g. blood cells or bacteria)

Antiseptics and Disinfectants

- Antiseptics are used to prevent infection or sepsis
- Disinfectants differ in that they are not safe to apply to living tissues
- A distinction between antiseptics and disinfectants depends upon concentration
 - Common household disinfectants include chlorine compounds, as well as lye, copper sulfate and quaternary ammonium compounds.
 - Some disinfectants are powerful enough to eliminate all life forms from an area and are given the name sterilants.

A number of factors affect the potency of disinfectants:

- Biofilms
 - have the ability to retard or even prevent the diffusion of disinfectants to the microbes, eliminating the effectiveness of the compound
- High concentrations of organic compounds
 - o decrease the potency of disinfectants
- Endospores
 - tend to be more resistant to disinfectants than vegetative cells