Respiratory System Infections
Lecture 18 – Dr. Gary Mumaugh

Antibacterial, Antiviral & Antifungal Therapy
Principles of Antibiotic Treatment

- In western care, the goal is to start first with broad-spectrum antibiotics, then switch to narrower within three days when C & S (cultures and sensitivities) have been identified
- “Scattergun approach” is common in medical practice
 - The hope that the antibiotic prescribed may be able to cure the infections without any lab data to support it
 - This approach is largely due to the fact that the patient expects an RX at every visit
 - Great numbers of patients are given antibiotics that may not have been necessary or appropriate
 - One or two antibiotics cannot fulfill all the treatment goal
 - Many providers tend to have a small number of “favorite” antibiotics that they will prescribe for most infections, often without checking C & S to determine if treatment is appropriate
 - Increased numbers of resistant strains are being discovered daily

Narrow spectrum to broad spectrum

- Narrow-spectrum
 - Penicillin, Oxacillin, Keflin, Keflex, Gentamycin, Vanomycin, flagyl
- Moderately broad-based spectrum
 - Ampicillin, Ticarcillin, Piperacillin, Kefzol, Cipro, Bactrim, Spectrum
- Broad-spectrum
 - Ampicillin-sulbactam, Amoxicillin, Ceftriaxone, Tetracycline, Doxycycline, Levofloxin
- Very broad-spectrum
 - Ticarcillin, Imipenim, Moxifloxacin

The cost of antibiotics

- Orals can cost as little as $5-$40 for 10 days
 - Tetracycline, Erythromycin, Keflex
- High end cost of $160-$200 for 10 days
 - Azithromycin, Clarithromycin, Moxafloxin
- IV antibiotics
 - From $20-$60 per day on low end
 - Up to $200 per day on the high end
Respiratory and EENT Infections

Respiratory System Infections
- Encompass enormous variety of illnesses
 - Trivial to fatal
- Divided into infections of
 - Upper respiratory
 - Head and neck
 - Uncomfortable but generally not life threatening
 - Lower respiratory
 - Chest
 - More serious
 - Can be life threatening
 - Particularly in the immunocompromised

Normal Microbiota
- Nasal cavity, nasopharynx and pharynx colonized by numerous bacteria
 - Other sites are sterile
 - Numerous classes of organisms are present from aerobes to anaerobes
- Conjunctiva commonly have no bacteria
 - Organisms that do invade are swept into the nasolacrimal duct (tear duct) and nasopharynx
<table>
<thead>
<tr>
<th>Genus</th>
<th>Characteristics</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus</td>
<td>Gram-positive cocci in clusters</td>
<td>Commonly includes the potential pathogen Staphylococcus aureus, inhabiting the nostrils. Facultative anaerobes.</td>
</tr>
<tr>
<td>Corynebacterium</td>
<td>Pleomorphic, Gram-positive rods; non-motile; non-spore-forming</td>
<td>Aerobic or facultatively anaerobic. Diphtheroids include anaerobic and aerotolerant organisms.</td>
</tr>
<tr>
<td>Moraxella</td>
<td>Gram-negative diplococci and diplococci</td>
<td>Aerobic. Some microscopically resemble pathogenic Neisseria species such as N. meningitidis.</td>
</tr>
<tr>
<td>Haemophilus</td>
<td>Small, Gram-negative rods</td>
<td>Facultative anaerobes. Commonly include the potential pathogen H. influenzae.</td>
</tr>
<tr>
<td>Bacteroides</td>
<td>Small, pleomorphic, Gram-negative rods</td>
<td>Obligate anaerobes.</td>
</tr>
<tr>
<td>Streptococcus</td>
<td>Gram-positive cocci in chains</td>
<td>α (especially viridans, meaning green hemolysis), β (clear hemolysis), and γ (non-hemolytic) types; the potential pathogen, S. pneumoniae is often present. Aerotolerant (obligate fermenters).</td>
</tr>
</tbody>
</table>

Influenza
- A major cause of death worldwide
 - Bird flu pandemic at the end of WWI caused 50 million worldwide deaths
 - Current bird flu beginning to see a resurgence
 - Resultant new strains are what causes pandemics
- **S & S**
 - Dramatic and abrupt with malaise, chills, cough, fever (3 days), rhinorrhea, cervical adenopathy
 - Virus kills the respiratory epithelium causing pulmonary function decline
 - Major complication is viral pneumonia
- **Mortality** is high and has not been reduced for decades
- **Diagnosis**
 - Diagnosis is usually confirmed by isolation via blood work
 - Difficult to distinguish from other respiratory diseases
- **Treatment**
 - Never use ASA with flu which can cause Reye’s syndrome (fatty liver infiltration, mental changes, lethargy, delirium, coma)
 - Prevention has been shown to be the best defense
 - Amantidine and Zamanavir (nasal inhalers) are sometimes given early with mixed results
Influenza

Swine Flu (H1N1) Virus

- Is a subtype of influenza A virus and the most common cause of influenza (flu) in humans.
- Some strains of H1N1 are endemic in humans and cause a small fraction of all influenza-like illness and a small fraction of all seasonal influenza.
- Swine flu (swine influenza) is a respiratory disease caused by viruses that infect the respiratory tract of pigs and result in nasal secretions, a barking-like cough, decreased appetite, and listless behavior.
- H1N1 flu is contagious
- H1N1 flu is NOT caused by eating pork or pork products
- Illness with the new H1N1 flu virus has ranged from mild to severe
- About 70 percent of people who have been hospitalized with H1N1 flu have had one or more medical conditions that placed them in the “high risk” category
 - These include pregnancy, diabetes, heart disease, asthma and kidney disease.
- Seniors (adults 65 years and older) are prioritized for antiviral treatment to limit risk of complication if they get flu
Seasonal Flu vs. H1N1 Flu Symptoms
• Seasonal flu
 o Fever
 o Coughing and/or sore throat
 o Runny or stuffy nose
 o Headaches and/or body aches
 o Chills
 o Fatigue
• H1N1 Flu
 o Similar to seasonal flu, but symptoms may be more severe.
 o There may be additional symptoms. A significant number of H1N1 flu cases:
 o Vomiting
 o Diarrhea

Emergency Warning Signs of Children vs. Adults
• In Children
 o Fast breathing or trouble breathing
 o Bluish or gray skin color
 o Not drinking enough fluids
 o Severe or persistent vomiting
 o Not waking up or not interacting
 o Being so irritable that the child does not want to be held
 o Flu-like symptoms improve but then return with fever and worse cough
• In Adults
 o Difficulty breathing or shortness of breath
 o Pain or pressure in the chest or abdomen
 o Sudden dizziness
 o Confusion
 o Severe or persistent vomiting
 o Flu-like symptoms improve but then return with fever and worse cough

Diagnosis of H1N1
• If the symptoms indicate the presence of the H1N1 flu, the physician usually performs a nasopharyngeal swab test to determine if the H1N1 virus is present. If it is present, the flu is diagnosed
• The test is performed by inserting a thin cotton swab two inches into the nostril, aimed towards the throat.

Treatment of H1H1
• Antiviral Therapy
 o Efficacy — Therapy should be started as soon as possible, since evidence of benefit is strongest for seasonal influenza when treatment is started within 48 hours of illness onset
 o At this time, treatment with Tamiflu® or Relenza® is recommended for all people with suspected or confirmed influenza who require hospitalization
 o The recommended duration of treatment is five days
Conjunctivitis – “Pink Eye”
- Rubbing causes transfer to other eyes
- Tears contain antibacterial agents
- Viral conjunctivitis
 - The most common and most contagious
- Bacterial conjunctivitis
 - Is common in developing countries with copious amounts of pus
- Allergic conjunctivitis
 - From sensitivity to environmental antigens
- Symptoms - Pinkeye
 - Increased tears and redness
 - Swelling eyelids
 - Sensitivity to bright light
 - Large amounts of pus
- Pathogenesis
 - Few details known about pathogenesis of bacterial conjunctivitis
 - Most likely from airborne respiratory droplets
 - Resist destruction by lysozyme
- Prevention
 - Prevention is directed towards
 - Removal of infected individuals from school or day care
 - Hand washing
 - Avoid rubbing or touching eyes
 - Avoid sharing towels
 - Treatment is achieved through eye drops or ointments containing antibacterial medications

Keratitis – corneal infection
- The most common form from *Staphylococci*
- Viral keratitis
 - Caused by herpes simplex resulting in corneal ulcer
 - Giving cortisone or eye drops with cortisone can worsen the condition to blindness
- Parasitic keratitis
 - Commonly seen in contact lens wearers who wash their lens with tap water
- Reactive keratitis
 - Not caused by an infection
 - Thought to be an autoimmune reaction and resolves in 2-3 years with considerable problems
 - Also caused by towel slapping in locker rooms
Otitis externa – “swimmers ear”
- Is usually a mild annoyance
- Can be more severe in swimmers who swim daily
- Water trapped in the ear causes irritation, low grade infection and itching
- S & S
 - Otalgia and otorrhea with pruritis to severe pain, swelling can occlude canal with hearing loss
- DX
 - Elevated ESR, bone scan & CT scan to diagnose osteomyelitis
- TX
 - Mild cases – polymycin and cortisone drops
 - Severe cases – IV antibiotics and debridement

Otitis media – middle ear infection
- Common in preschool and school age children
- Eustachian tube development
- Bacteria from mouth and pharynx travel up the tube to the middle ear
- S & S
 - Fever, vertigo, tinnitus and pain, nysatagmus
- DX
 - Requires the presence of fluid & redness or inflammation
- TX
 - Amoxicillin 10 days, Augmentin in severe cases

Two Types of Otitis Media
- Acute Otitis Media
 - Inflammatory symptoms of pain, fever, malaise
 - 80% of cases resolve in 24 hours
Otitis media - continued

- Serous Otitis Media
 - Presents with effusion of fluid in the middle ear
 - Most frequent diagnosis in children under 15
 - Studies have shown no bacterial pathogen 65% of the time
 - Serous fluid may remain for up to 12 weeks after an acute episode

- Otitis Media history
 - History begins with resolution of signs and symptoms including effusion

- Clinical Manifestations
 - Uncomplicated Otitis Media
 - Unilateral
 - Mild fever of no fever
 - No perforation of eardrum, little or no membrane bulging
 - Well appearance
 - Mild pain
 - Complicated Otitis Media
 - Perforation of tympanic membrane
 - Suppuration
 - Mastoiditis
 - High Fever
 - Sick appearance
 - Severe pain

- Anatomic Considerations
 - Eustachian tube in infants and small children is very small and narrow. It connects the inner ear to back of nose
 - In infants, the tube is horizontal and does not drain well
 - As they grow, so grows the tube, allowing for better drainage
 - With less retained fluid, pathogens have less opportunity to cause infection

Sinusitis

- An infection in one or more oral-nasal sinuses
- Symptoms - Sinusitis
 - Pain and pressure
 - Generally localized to involved sinus
 - Tenderness over sinus
 - Headache
 - Severe malaise

- Pathogenesis
 - Begins with infection of nasopharynx
 - Spreads upwards to sinuses
 - Pathogenesis mechanism much like that of otitis media

- Prevention
 - There are no proven preventative measures for sinusitis
Sinusitis - continued
• Treatment is directed at support care
 o Nasal decongestants, Augmentin
 o Decongestants and antihistamines are generally discouraged
 ▪ Ineffective and can be harmful

Mastoiditis
• Infection of the air cells of the mastoid process
• Severe cases can lead to brain abscess
• S & S
 o Severe pain most noticeable with otorrhea
 o Mimics severe suppurative otitis media
• DX
 o Dx by x-rays
 o DD from otitis media by duration and intensity
• TX
 o Augmentin and possible admission with IV
Pharyngitis – common sore throat

- S & S
 - Sore throat, discharge, dry cough, malaise, low grade fever, can have a fulminating infection
- Viral pharyngitis
 - 85% of time in adults
 - Children – 50% viral and 50% bacterial
 - Common causes – rhinovirus, coronavirus, adenovirus, herpes, Epstein-Barr
- Bacterial pharyngitis
 - DD with purulent exudates and tender adenopathy, headache and fever common
 - Usually caused by streptococcus – Dx with throat culture
 - Penicillin in tx for bacterial, but not for viral

Adenoviral Pharyngitis

- Symptoms
 - Runny nose
 - Fever
 - Sore throat
 - Often accompanied with pus on the pharynx and tonsils
 - Lymph nodes in neck enlarged and tender
 - Certain strains of virus cause hemorrhagic conjunctivitis
 - Mild cough is common with infection
 - Cough may worsen; indication of complicating disease
 - Infection usually resolves in 1 to 3 weeks
 - With or without treatment
- Causative Agent - Adenovirus
 - 45 types infect humans
 - Non-enveloped
 - Double-stranded DNA genome
 - Remains infectious in environment for extended periods
 - Transmitted easily on medical instruments
 - Inactivated easily with heat and various disinfectants
- Pathogenesis
 - Virus infects epithelial cells
 - Attaches to specific surface receptors
 - Multiplies in cell nucleus
 - Cells escape to epithelial surface
 - Cell destruction initiates inflammation
 - Different viruses affect different tissues
 - Adenovirus type 4 causes sore throat and lymph node enlargement
 - Adenovirus type 8 causes extensive eye infection
Adenoviral Pharyngitis - continued

- Epidemiology
 - Human is only source of infection
 - Common among school children
 - Usually sporadic; however, outbreaks do occur
 - Most common in winter and spring
 - Summer outbreaks linked to inadequately chlorinated swimming pools
 - Virus spread by respiratory droplets
 - Epidemic spread promoted by high number of asymptomatic carriers

- Prevention and Treatment
 - Prevention is the same as the common cold
 - There is no treatment
 - Patients usually recover uneventfully
 - Bacterial secondary infections may occur requiring antibiotics for treatment

- Antibiotic Dosage for Recurrent Pharyngitis

<table>
<thead>
<tr>
<th>Drug</th>
<th>Adult Dosage</th>
<th>Pediatric Dosage</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clindamycin</td>
<td>600 mg orally divided in 2-4 divided doses</td>
<td>20-30 mg/kg/day in 3 divided doses (max:1.8 g/day)</td>
<td>10 days</td>
</tr>
<tr>
<td>Amoxicillin-clavulanate</td>
<td>500 mg twice daily</td>
<td>40 mg/kg/day in 3 divided doses</td>
<td>10 days</td>
</tr>
<tr>
<td>Penicillin benzathine</td>
<td>1.2 million units intramuscularly for 1 dose</td>
<td>0.6 million units for under 27 kg (50,000 units/kg)</td>
<td>1 dose</td>
</tr>
<tr>
<td>Penicillin VK with rifampin</td>
<td>Rifampin: 300 mg PO BID</td>
<td>20 mg/kg/d divided in two equal doses</td>
<td>Last 4 days of treatment with 10 day therapy of penicillin VK</td>
</tr>
</tbody>
</table>
Strep Throat (Streptococcal Pharyngitis)

- **Symptoms**
 - Difficulty swallowing
 - Fever
 - Red throat with pus patches
 - Enlarged tender lymph nodes
 - Localized to neck
 - Most patients recover uneventfully in approximately a week

- **Pathogenesis**
 - Causes a wide variety of illnesses
 - Due to bacteria-producing enzymes and toxin that destroy cells

- **Complications of infection can occur during acute illness**
 - Examples include scarlet fever and quinsy
 - Certain complications can develop late
 - Acute glomerulonephritis
 - Acute rheumatic fever

Additional Information

1. *Streptococcus pyogenes* enters by inhalation (nose), or by ingestion (mouth).
2. Pharyngitis, fever, enlarged lymph nodes; sometimes tonsillitis, abscess; scarlet fever with strains that produce erythrogenic toxin.
3. *S. pyogenes* exits by nose and mouth.

Late complications appear:

4. glomerulonephritis
5. rheumatic fever
6. neurological abnormalities

Complications subside.
7. Damaged heart valves leak, heart failure develops.

Symptoms
- Sore, red throat, with pus and tiny hemorrhages, enlargement and tenderness of lymph nodes in the neck; less frequently, abscess formation involving tonsils; occasionally, rheumatic fever and glomerulonephritis as sequelae

Incubation period
- 2 to 6 days

Causative agent
- *Streptococcus pyogenes*, Lancefield group A β-hemolytic streptococci

Pathogenesis
- Virulence associated with hyaluronic acid capsule and M protein, both of which inhibit phagocytosis; protein G binds Fc segment of IgG; protein F for mucosal attachment; multiple enzymes.

Epidemiology
- Direct contact and droplet infection; ingestion of contaminated food.

Prevention and treatment
- Avoidance of crowding; adequate ventilation; daily penicillin to prevent recurrent infection in those with a history of rheumatic heart disease. Treatment: 10 days of penicillin or erythromycin.

Streptococcal Pharyngitis

- **Symptoms - Characterized by**
 - Difficulty swallowing
 - Fever
 - Red throat with pus patches
 - Enlarged tender lymph nodes
 - Localized to neck
 - Most patients recover uneventfully in approximately a week

- **Pathogenesis**
 - Causes a wide variety of illnesses
 - Due to bacteria-producing enzymes and toxin that destroy cells

- **Complications of infection can occur during acute illness**
- **Examples include** scarlet fever and quinsy
- **Certain complications can develop late**
 - Acute glomerulonephritis
 - Acute rheumatic fever
Streptococcal Pharyngitis - continued

- Epidemiology
 - Spread readily by respiratory droplets
 - Especially in range of 2 to 5 feet
 - Infect only humans under natural conditions
 - Nasal organism spreads more effectively than pharyngeal carriers
 - Peak incidence occurs in winter or spring
 - Highest in grade school children

- Prevention
 - No vaccine available
 - Adequate ventilation
 - Avoid crowds
 - Sore throats in presence of fever should be cultured for prompt treatment
 - Prompt treatment is essential to prevent complications

- Treatment
 - Confirmed strep throat treated with 10 days of antibiotics
 - Penicillin or erythromycin are drugs of choice
 - Eliminates organisms in 90% of cases

Peri-tonsillar abscess

- Were very common before antibiotic tx
- S & S
 - Dramatic throat pain on the abscess side with high fever, prostration and dyspnea
- DX
 - Pharyngoscopic examination
- TX
 - Surgical drainage of abscess
 - T & A if >3 episodes of tonsillitis in 1 year
 - Very common from 1940 to 1970

Common Cold

- Symptoms
 - Malaise
 - Scratchy mild sore throat
 - Runny nose
 - Cough and hoarseness
 - Nasal secretion
 - Initially profuse and watery
 - Later, thick and purulent
 - No fever
 - Unless complicated with secondary infection
 - Symptoms disappear in about a week
Common Cold - continued

- Pathogenesis
 - Virus attaches to specific receptors on respiratory epithelial cells and multiplies in cells
 - Large number of viruses released from infected cells
 - Injured cells cause inflammation which stimulates profuse nasal secretion, sneezing and tissue swelling
 - Infection is halted by inflammatory response, interferon release and immune response
 - Infection can extend to ears, sinuses and lower respiratory tract before stopping

- Epidemiology
 - Humans are only source for cold virus
 - Close contact with infected person or secretions usually necessary for transmission
 - High concentrations are found in nasal secretions during first 2 or 3 days of a cold
 - Young children transmit cold virus easily
 - Due to lack of good hygiene
 - No reliable relationship between exposure to cold temperature and development of a cold

- Prevention
 - No vaccine
 - Too many different types of rhinovirus
 - Makes vaccination impractical
 - Prevention directed at
 - Hand washing
 - Keeping hands away from face
 - Avoiding crowds during times when colds are prevalent

- Treatment
 - Antibiotic therapy is ineffectual
 - Certain antiviral medications show promise
 - Must be taken at first onset of symptoms
 - Treatment with over-the-counter medications may prolong duration due to inhibition of inflammation
Diphtheria

- Symptoms
 - Usually begins with mild sore throat and slight fever, fatigue and malaise and dramatic neck swelling
 - Whitish membrane forms on tonsils, or in nasal cavity
 - Most strains release diphtheria toxin

- Causative Agent
 - Corynebacterium diphtheria
 - Variably shaped
 - Gram-positive
 - Non-spore forming
 - Certain strains produce diphtheria toxin

- Pathogenesis
 - Exotoxin released into bloodstream
 - Results in damage to heart, nerves and kidneys

- Epidemiology
 - Humans are primary reservoir
 - Spread by air
 - Acquired through inhalation
 - Sources of infection include
 - Carriers who recovered from infection
 - Asymptomatic cases
 - People with active disease
 - Contaminated objects
 - Bacterium can be carried in chronic skin ulcer - Cutaneous diphtheria
Diphtheria - continued

- **Prevention**
 - Disease results primarily from toxin absorption
 - Not microbial invasion
 - Prevention directed at immunization
 - DPT - Neutralize toxin
 - Immunity wanes after childhood
 - Booster immunization should be given every 10 years

- **Treatment**
 - Effectiveness depends on early antiserum treatment
 - Delay in treatment may be fatal
 - Antibiotics are given to eliminate bacteria
 - Penicillin and erythromycin
 - Stops transmission of disease
 - Even in presence of treatment 1 in 10 patients die

TABLE 22.4 Diphtheria

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Corynebacterium diphtheriae enters by inhalation.</td>
</tr>
<tr>
<td>2</td>
<td>Infection established in nasal cavity and/or throat.</td>
</tr>
<tr>
<td>3</td>
<td>Toxin released, pseudomembrane forms.</td>
</tr>
<tr>
<td>4</td>
<td>Toxin causes paralysis, damages heart muscle, kidneys, nerves.</td>
</tr>
<tr>
<td>5</td>
<td>Membrane may come loose and obstruct breathing.</td>
</tr>
<tr>
<td>6</td>
<td>Exit from body by respiratory secretions.</td>
</tr>
<tr>
<td></td>
<td>Symptoms</td>
</tr>
<tr>
<td></td>
<td>Incubation period</td>
</tr>
<tr>
<td></td>
<td>Causative agent</td>
</tr>
<tr>
<td></td>
<td>Pathogenesis</td>
</tr>
<tr>
<td></td>
<td>Epidemiology</td>
</tr>
<tr>
<td></td>
<td>Prevention and treatment</td>
</tr>
</tbody>
</table>
Whooping Cough

• Symptoms
 o Runny nose followed by bouts of uncontrollable coughing
 ▪ Termed paroxymal coughing
 • Severe cough can cause rupture of small blood vessels in the eyes
 o Coughing spasm followed by characteristic “whoop”
 ▪ Sound made by the forceful inspiration of air
 o Vomiting and seizure may occur

• Causative Agent
 o *Bordetella pertussis*
 ▪ Small
 ▪ Encapsulated
 ▪ Strictly aerobic
 ▪ Gram-negative
 ▪ Bacillus
 ▪ Does not survive long periods outside the host

• Pathogenesis
 o Enters respiratory tract with inspired air and attaches to ciliated cells
 o Organism colonizes structures of the upper and lower respiratory tract
 o Mucous secretion increases which causes ciliary action to decrease
 ▪ Cough reflex is only mechanism for clearing secretions

• Epidemiology
 o Spreads via infected respiratory droplets
 o Most infectious during runny nose period
 ▪ Number of organisms decrease with onset of cough
 o Classically disease of infants
 ▪ Milder forms are seen in older children and adults
 o Often overlooked as a persistent cold
 ▪ Fosters transmission

• Prevention
 o Directed at vaccination of infants
 ▪ Prevents disease in 70% of individuals
 ▪ Pertussis vaccine combined with diphtheria and tetanus toxoids (DPT)
 • Injections given at 6 weeks, 4, 6 and 18 months

• Treatment
 o Erythromycin is effective at reducing symptoms if given early
 o Antibiotic usually eliminates bacteria from respiratory secretions
Pulmonary Infections

Pneumonia
- 2-3 million cases in USA yearly causing 45,000 deaths
 - Mortality is 4 times higher over 65
- Predisposing factors
 - Preceded by viral URI causing cilia damage and the production of serous exudates
 - Smoking impairs mucociliary escalation
 - Elderly and compromised immune systems
 - HIV, AIDS, sickle cell disease, diabetes
 - Organ transplant patients
 - Close indoor quarters in the winter
 - Hypostatic pneumonia can occur from constant laying down

Acute vs. Chronic Pneumonia
- Acute
 - Symptoms within 1-2 days after exposure
 - Shaking, fever, chills, prostration, dyspnea
 - Common cause of death before antibiotics
- Chronic
 - More slow progressive form
 - Are most viral and fungal pneumonias
 - May last several weeks to months
- Dx based on symptoms
 - Typical pneumonia
 - Rapid onset, productive cough, fever
 - X-ray changes

TABLE 22.8 Pertussis

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Runny nose followed after a number of days by spasms of violent coughing; vomiting and possible convulsions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incubation period</td>
<td>7 to 21 days</td>
</tr>
<tr>
<td>Causative agent</td>
<td>Bordetella pertussis, a tiny Gram-negative rod</td>
</tr>
<tr>
<td>Pathogenesis</td>
<td>Colonization of the surfaces of the upper respiratory tract and tracheobronchial system; ciliary action slowed; toxins released by B. pertussis cause death of epithelial cells and increased cAMP; fever, excessive mucus output, and a rise in the number of lymphocytes in the bloodstream result.</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>Inhalation of infected droplets; older children and adults have mild symptoms.</td>
</tr>
<tr>
<td>Prevention and treatment</td>
<td>Acellular vaccines, for immunization of infants and children; erythromycin, somewhat effective if given before coughing spasms start, eliminates B. pertussis.</td>
</tr>
</tbody>
</table>
Pneumonia – continued

- Atypical pneumonia
 - Common with most viral pneumonias
- Dx based on part of the lungs affected
 - Lobar pneumonia
 - “Classic” pneumonia in which all the alveoli sacks in the lobe are pus filled or fluid filled
 - Bronchopneumonia
 - Patchy infiltration throughout the bronchi and bronchioles
 - Interstitial pneumonia
 - In the connective tissue between the alveoli with granular infiltration
 - Lung abscess
 - Organisms destroy tissue and form pus abscess
 - Emphyema
 - Prurulent infection in the pleural space
- Interstitial pneumonia
 - In the connective tissue between the alveoli with granular infiltration
- Lung abscess
 - Organisms destroy tissue and form pus abscess
- Emphyema
 - Prurulent infection in the pleural space
- Nodular lung infections
 - TB, coccidiomycosis and histoplasmosis cause nodular infiltrations
- Dx according to where the pneumonia was acquired
 - Community acquired
 - Acquired anywhere in the community, but not in a hospital
 - Nosocomial
 - Acquired in a hospitalized setting
- Dx according to etiologic agent
 - Pneumococcal pneumonia
 - Classic bacterial pneumonia
 - AKA streptococcal pneumonia
 - Aspiration pneumonia
 - Common in elderly from swallowing gastric or food contents in the trachea
 - Often vomiting with loss on consciousness
 - Hemophilus pneumonia
 - Common on smokers with COPD
 - Staphlococci pneumonia
 - Virulent infection often after influenza
- Dx according to etiologic agent - continued
 - Viral pneumonia
 - Most common form
- S & S of pneumonia
 - Cough, sore throat, fever, chills, rapid breathing, wheezing, dyspnea, chest or abdominal pain, exhaustion, vomiting
- DX of pneumonia
 - Medical history, physical examination, x-ray
- TX of pneumonia
 - Antibiotics, respiratory therapy with oxygen
 - Amoxicillin is first-line therapy
 - Steroids for wheezing
Pneumonia – continued
 o Expectorates and lots of fluids
 o Codeine for severe pain

Tuberculosis - TB

- One third of world population have active or latent infection resulting in 3 million deaths per year
- Pathology and course of TB
 o A chronic destruction of the lung with scarring
 o Slow progressive lung damage and possible death
 o Systemic symptoms of wasting, fatigue, night sweats, appetite loss – used to be called consumption
- S & S
 o Cough, sputum, hemoptysis, TB spread to organs leads to destruction of organs and organ systems
- DX of classic triad
 o Lung infiltrate, calcified node enlargement, pleural effusion
- TX of TB
 o When it comes to treatment of TB, think slow
 o Slow growth of organisms, slow destruction of lung tissue, prolonged treatment and slow recovery
 o Lasts at least year and is treated with extensive drug therapy with isoniazid and rifampin
Tuberculosis – TB - continued

- Symptoms
 - Chronic illness
 - Symptoms include
 - Slight fever with night sweats
 - Progressive weight loss
 - Chronic productive cough
 - Sputum often blood streaked

- Causative Agent - *Mycobacterium tuberculosis*
 - Gram-positive cell wall type
 - Slender bacillus
 - Slow growing
 - Generation time 12 hours or more
 - Resists most prevention methods of control

- Pathogenesis
 - Usually contracted by inhalation of airborne organisms
 - Bacteria are taken up by pulmonary macrophages in the lungs
 - Resists destruction within phagocyte

- Pathogenesis
 - Organisms are carried to lymph nodes
 - About 2 weeks post infection intense immune reaction occurs
 - Macrophages fuse together to make large multinucleated cell
 - Macrophages and lymphocytes surround large cell
 - This is an effort to wall off infected tissue
 - Activated macrophages release into infected tissue
 - Causes death of tissue resulting in formation of “cheesy” material

- Epidemiology
 - Estimated 10 million Americans infected
 - Rate highest among non-white, elderly poor people
 - Small infecting dose
 - As little as ten inhaled organisms
 - Factors important in transmission
 - Frequency of coughing, adequacy of ventilation, degree of crowding

- Tuberculin test used to detect those infected
 - Small amount of tuberculosis antigen is injected under the skin
 - Injection site becomes red and firm if infected
 - Positive test does not indicate active disease

- Prevention
 - Vaccination for tuberculosis widely used in many parts of the world
 - Vaccine not given in United States because it eliminates use of tuberculin test as diagnostic tool
Tuberculosis - continued

- **Treatment**
 - Antibiotic treatment is given in cases of active TB
 - Two or more medications are given together to reduce potential antimicrobial resistance
 - Antimicrobials include
 - Rifampin and Isoniazid (INH)
 - Both target actively growing organisms and metabolically inactive intracellular organisms
 - Therapy is pronged
 - Lasting at least 6 months

Tuberculosis

1. **Airborne Mycobacterium tuberculosis** bacteria are inhaled and lodge in the lungs.
2. The bacteria are phagocytized by lung macrophages and multiply within them, protected by lipid-containing cell walls and other mechanisms.
3. Infected macrophages are carried to various parts of the body such as the kidneys, brain, lungs, and lymph nodes; release of *M. tuberculosis* occurs.
4. Delayed hypersensitivity develops; wherever infected *M. tuberculosis* has lodged, an intense inflammatory reaction develops.
5. The bacteria are surrounded by macrophages and lymphocytes; growth of the bacteria ceases.
6. Intense inflammatory reaction and release of enzymes can cause caseation necrosis and cavity formation.
7. With uncontrolled or reactive infection, *M. tuberculosis* exits the body through the mouth with coughing or singing.

Symptoms
- Chronic fever, weight loss, cough, sputum production

Incubation period
- 2 to 10 weeks

Causative agent
- *Mycobacterium tuberculosis*; unusual cell wall with high lipid content

Pathogenesis
- Colonization of the alveoli incites inflammatory response; ingestion by macrophages follows; organisms survive ingestion and are carried to lymph nodes, lungs, and other body tissues; tubercle bacilli multiply; granulomas form.

Epidemiology
- Inhalation of airborne organisms; latent infections can reactivate.

Prevention and treatment
- BCG vaccination, not used in the United States; tuberculin (Mantoux) test for detection of infection, allows early therapy of cases; treatment of all high-risk cases including young people with positive tests and individuals whose skin test converts from negative to positive. Treatment: two or more antitubercular medications given simultaneously long term, such as isoniazid (INH) and rifampin; DOTS.